Revisiting Kepler: Eine Plausibilitatsanalyse der
NVIDIA Tesla K80 als kosteneffizienter
LLM-Inferenz-Node im Jahr 2025 *

Philipp Horn
Horn-Consulting UG
kontakt@philipp-horn.dev

30. September 2025

Revisiting Kepler: A Plausibility Analysis of the
NVIDIA Tesla K80 as a Cost-Efficient LLM Inference
Node in 2025

Zusammenfassung

Die steigende Nachfrage nach lokaler und kosteneffizienter Large Lan-
guage Model (LLM) Inferenz stimuliert die Nutzung von Legacy-Hardware.
Diese Arbeit analysiert die technische Plausibilitdt und die Gesamtbe-
triebskosten (Total Cost of Ownership, TCO) des Einsatzes der NVIDIA
Tesla K80 (Kepler-Architektur, CC 3.7) als dedizierter LLM-Inferenz-
Node im Jahr 2025. Obwohl der K80-Node aufgrund des niedrigen An-
schaffungspreises (mindestens 89 auf dem deutschen Markt; 20-50 USD
in US-Quellen [2, 24]) eine monetére Einsparung bietet, resultieren signi-
fikante architektonische und softwareseitige Limitierungen in einem ho-
hen Wartungsaufwand (Software-Debt) und einer drastisch reduzierten
Token-pro-Sekunde (T/s)-Rate von 4.17 T/s (empirisch) [1]. Die archi-
tektonischen Hauptengpésse, insbesondere das Fehlen der nativen __dp4a-
Instruktion fiir moderne 4-bit-Quantisierungen [3, 4] und die Kommunika-
tionsdrosselung iiber den PCle 3.0 Bus bei Multi-GPU-Operationen [5],
disqualifizieren die K80 als effiziente Losung fiir latenzkritische Anwen-
dungen. Der Node wird primér fiir stark budgetorientierte Nischenprojek-
te oder als technisches Lehrstiick empfohlen.

Keywords: LLM Inference; Legacy Hardware; NVIDIA Tesla K80; Kepler Ar-
chitecture; Compute Capability 3.7; DP4A; GGUF Quantization; Total Cost of
Ownership (TCO).

*Preprint-Version. Diese Arbeit wird im néchsten Update mit zusédtzlichen empirischen
Benchmarks zur Robustheit und Reproduzierbarkeit erweitert.

1 Einleitung und Kontext

Die Verfiigbarkeit leistungsstarker LLMs erfordert in der Regel hochspezialisier-
te Hardware, was fiir private Nutzer und kleine Forschungsteams eine erhebliche
finanzielle Hiirde darstellt [6]. Die Wiederverwendung von alteren Server-GPUs,
wie der 2014 verdtffentlichten NVIDIA Tesla K80, wird als Losungsansatz zur
Minimierung der Initialkosten diskutiert [24]. Der K80 Accelerator basiert auf
dem Dual-GPU-Design mit zwei GK210-Kernen und verfiigt iiber 24 GB GD-
DR5-Speicher [7], aufgeteilt in zwei separate 12 GB-Pools [8]. Ziel dieser Analyse
ist es, die Durchfithrbarkeit dieses Ansatzes wissenschaftlich zu bewerten und
die resultierenden LeistungseinbuSSen zu quantifizieren.

2 Architektonische Limit. der Kepler-Plattform

Abbildung 1: Schematische Darstellung der Dual-GPU-Architektur der NVIDIA
Tesla K80. Die Segmentierung des 24 GB VRAM in zwei separate 12 GB GK210-
Kerne erfordert Multi-GPU-Kommunikation iiber den langsameren PCle-Bus,
wenn Modelle iiber 12 GB geladen werden. (Quelle: Eigene Darstellung, erstellt
mit PlantUML)

Die K80 ist durch drei zentrale Architektureigenschaften fiir moderne LLM-
Workloads limitiert: die Compute Capability, die VRAM-Segmentierung und
die Speicherbandbreite.

2.1 Compute Capability (CC 3.7) und Software-Dekompatibilitit

Die Kepler-Architektur der K80 besitzt die Compute Capability (CC) 3.7 [10].
Diese Architektur ist seit CUDA Toolkit 12.0 offiziell deprecated und wird nicht
mehr nativ unterstiitzt [11]. Ein funktionsfihiger Betrieb erfordert daher die
manuelle Konfiguration einer Legacy-Toolchain (z. B. CUDA 11.4 in Verbindung
mit GCC 10) [1], was eine signifikante Software-Debt in Bezug auf Wartbarkeit
und zukiinftige Kompatibilitat schafft.

2.2 Fehlen der DP4A-Instruktion

Der kritischste Performance-Engpass entsteht durch das Fehlen der nativen
__dp4a-Instruktion (per-byte integer dot product). Diese Instruktion ist fiir die

Hardware-Beschleunigung moderner 4-bit-Quantisierungen (GGUF k-quants)
essenziell und erst ab der Pascal-Architektur (CC 6.1) verfigbar [3, 4]. Da die
K80 (CC 3.7) diese Funktion nicht unterstiitzt, muss die Quantisierungsberech-
nung in Frameworks wie 11lama.cpp auf langsamere Software-Workarounds zu-
riickgreifen [3]. Dies ist die kausale Erklarung fiir die geringe Inferenzgeschwin-
digkeit trotz aggressivem Quantisierungsgrad.

2.3 VRAM-Segmentierung und PCle-Bottleneck

Der nominelle 24 GB VRAM ist in zwei 12 GB-Sektionen aufgeteilt [8, 9]. Model-
le, deren quantisierter Speicherbedarf 12 GB iiberschreitet (z. B. Modelle > 7B
Parameter mit Kontextfenster), miissen zwingend iiber beide Kerne aufgeteilt
werden. Spezialisierte Community-Frameworks wie 01lama37 [12] sind in der
Lage, diese Modelle iiber die dedizierten Speicherpools zu verwalten und bei
Bedarf zum CPU-RAM auszulagern. Die Inter-GPU-Kommunikation zur Syn-
chronisation erfolgt jedoch ausschlieSSlich iiber den PCle 3.0-Bus [5, 13]. Im
Gegensatz zu modernen Architekturen mit Hochgeschwindigkeits-Interconnects
(NVLink), wird die sequenzielle Generierung von Tokens bei gesplitteten Mo-
dellen durch die im Vergleich geringe PCle 3.0 Bandbreite limitiert, was die
Inferenzrate zusétzlich senkt. Fir Single-GPU-Inferenz (Modelle < 12 GB) ist
der PCle-Bus nach dem initialen Laden des Modells typischerweise nicht der
Hauptengpass [14, 5].

3 Methodik und Experimentelle Basis

Dieses Kapitel beschreibt die Grundlage der Performance-Analyse, um die Re-
produzierbarkeit der ermittelten Tokens-pro-Sekunde (T/s)-Raten zu gewéhr-
leisten. Die Bewertung stiitzt sich auf empirische Benchmarks, die mit Legacy-
Software-Stacks durchgefiihrt wurden, da moderne, offizielle Toolchains keine
Unterstutzung fir die Kepler-Architektur (CC 3.7) mehr bieten.

3.1 Benchmark-Umgebung und LLM

Die Performance-Analyse stiitzt sich auf zwei unterschiedliche Hardware-Konfigurationen,
wobei das LLM gemma3: 12b unter 011lama und Open-WebUI als konsistente Test-
basis diente.

« K80 Node (Legacy-Setup): Vier NVIDIA Tesla K80-Karten (insgesamt
8 GPUs mit 8 x 12 GB VRAM). Die Software-Basis bildete Ubuntu 20.04
LTS in Verbindung mit einem Docker-Container, der spezifisch fiir die K80-
Architektur und Legacy-CUDA kompiliert wurde [25]. Die Multi-GPU-
Verwaltung fiir das 12B-Modell (groSSer als 12 GB) erfolgte durch Model
Splitting tiber die 8 GK210-Kerne des 011lama37-Forks [12].

« RTX Node (Budget-Performance-Setup): Zwei NVIDIA Consumer-
Karten (RTX 3060 12 GB und GTX 1060 6 GB).

Die Benchmark-Messungen auf dem K80 Node wurden unter Verwendung
des notwendigen Legacy-Software-Stacks (CUDA Toolkit 11.4 in Verbindung
mit GCC 10) durchgefiihrt [1].

3.2 Quantifizierung des Token-Durchsatzes

Die sequenzielle Latenz wurde durch die Messung der durchschnittlichen Tokens-
pro-Sekunde wéhrend der Generierungsphase (Response Rate) und der Dauer
der Prompt-Verarbeitung (Prompt Rate) ermittelt. Die detaillierten Messdaten
fiir einen einzelnen Durchlauf sind in Tabelle 1 aufgefiihrt.

Tabelle 1: Detaillierter Benchmark-Vergleich: Gemma3:12b Inferenz (Eigene

Messung)
Metrik K80 Node (4x K80 / 8x 12 GB) | RTX Node (3060 12 GB + 1060 6
Response Token/s 4.17 30.09
Prompt Token/s 4.29 33.56
Gesamtdauer (Approx.) Oh2mls O0hOm48s
Load Duration (Ladezeit) 26.62 s 33.56 s
Completion Tokens 376 440

Diese empirischen Daten zeigen, dass der K80 Node eine um ca. 86% gerin-
gere Response-Rate (4.17 T'/s vs. 30.09 T'/s) liefert als ein modernes Dual-RTX-
Budget-Setup. Die Geschwindigkeit der K80 (4.17 T'/s) liegt sogar noch unter
den pessimistischen Schéitzungen anderer Community-Benchmarks (5.5 —6 T'/s
fir ein 7B-Modell [1]), was die Limitierungen der CC 3.7-Architektur unter
realen Multi-GPU-Bedingungen unterstreicht [26].

4 Ergebnisse und Okonomische Analyse

4.1 Architektonische Performance-Engpéasse

Der kritischste Performance-Engpass entsteht durch das Fehlen der nativen
_-dp4a-Instruktion (per-byte integer dot product). Diese Instruktion ist fir die
Hardware-Beschleunigung moderner 4-bit-Quantisierungen (GGUF k-quants)
essenziell und erst ab der Pascal-Architektur (CC 6.1) verfiigbar [3, 4]. Da die
K80 (CC 3.7) diese Funktion nicht unterstiitzt, muss die Quantisierungsberech-
nung in Frameworks wie 11ama.cpp auf langsamere Software-Workarounds zu-
riickgreifen [3]. Dies ist die kausale Erklarung fiir die geringe Inferenzgeschwin-
digkeit trotz aggressivem Quantisierungsgrad.

4.2 Physische Komplexitat und Proprietiare Risiken

Der Einsatz der passiv gekiihlten K80 [19] in Workstations erfordert zwin-
gend einen DIY-Umbau zur aktiven Kiihlung [20], was mechanisches Geschick

voraussetzt. Ein weiteres signifikantes Risiko liegt in der proprietdren 8-Pin-
Stromversorgung der K80 [21]. Obwohl der Einsatz eines speziell beschafften Ad-
apters das Risiko eines Kurzschlusses (Bricking) eliminiert, muss dem Nutzer die
inhédrente Gefahr bewusst sein, die bei der Verwendung von nicht-spezialisierten,
handelstiblichen Consumer-Adaptern besteht [21, 22].

4.3 Okonomischer Vergleich (TCO)

Obwohl die K80 auf dem deutschen Gebrauchtmarkt Anschaffungskosten von
mindestens 89 aufweist (im Gegensatz zu den geringeren 20-50 USD in US-
Quellen [2, 24]), iibersteigt der kumulierte Zeitaufwand fiir die Konfiguration
(Legacy-Software, DIY-Kiihlung, Pinout-Sicherheit) die initiale Kostenerspar-
nis bei weitem. Die anfanglichen Hardware-Kosten werden durch die **erfor-
derliche Investition an Expertenzeit** fiir die Installation, das Debugging der
Legacy-Toolchain und die Losung thermischer/proprietidrer Probleme konter-
kariert. Diese ”"Wartungsschuldist ein schwer zu quantifizierender, aber hoher
TCO-Faktor.

Tabelle 2: Vergleich K80 mit relevanten Budget-Alternativen (Stand 2025)

Hardware/Modell CC VRAM (GB) T/s (7B Q4 / Gemma) !
Tesla K80 (DIY Node) 3.7 (Kepler) | 24 (2x 12, Splitted) 4.17 (Gemma3:12b) Extrem hoc
RTX 3060,/1060 Node 6.1 /8.6 18 (Unified/Split) 30.09 (Gemma3:12b) Mode
NVIDIA P102-100 (Mining) | 6.1 (Pascal) 10 (Unified) ~ 10 (erwartet) [23] Moder
RTX 4060 Ti 16GB 8.9 (Ada) 16 (Unified) > 30 (erwartet) [16] Sehr ni

Budget-Alternativen wie Pascal-basierte Mining-Karten (P10x, CC 6.1) bie-
ten fiir einen geringfligig hoheren Preis [23] eine native Unterstiitzung fiir __dp4a,
was zu einer deutlich besseren Inferenzleistung und einer vereinfachten Software-
Wartung fithrt [3].

5 Fazit und Empfehlung

Die Nutzung der NVIDIA Tesla K80 als LLM-Inferenz-Node ist technisch mog-
lich, jedoch mit erheblichen architektonischen und softwaretechnischen Kom-
promissen verbunden. Die notwendigen Workarounds zur Umgehung der CC
3.7-Dekompatibilitdt und der Mangel an Hardware-Beschleunigung fiir moder-
ne Quantisierungen resultieren in einer unzeitgemaSS geringen T /s-Rate.

Fir den technisch versierten Anwender, dessen Ziel primér im Lernen und
Experimentieren mit minimalen Hardwarekosten liegt, bietet die K80 ein heraus-
forderndes und lehrreiches Projekt. Fiir produktive oder latenzkritische Anwen-
dungen ist der Node aufgrund des ungiinstigen Verhéltnisses von Leistung pro
Installationsaufwand (Performance-per-Setup-Effort) und der hohen Software-
Debt nicht zu empfehlen. Wirtschaftlich iiberlegene Alternativen, die eine hohere
Compute Capability (CC > 6.1) und damit native DP4A-Unterstiitzung bieten,

sind vorzuziehen. Diese Erkenntnisse unterstreichen die allgemeine Bedeutung
der **Compute Capability > 6.1%* als Mindestanforderung fiir die effiziente
LLM-Inferenz auf preisgiinstiger Hardware.

Danksagung

Diese Arbeit basiert auf der Analyse von Community-Berichten, technischen
Dokumentationen und aktuellen Benchmark-Ergebnissen im Bereich der loka-
len LLM-Inferenz. Die Unterstiitzung bei der Recherche, Strukturierung und
Formatierung dieser Analyse wurde durch die Nutzung der Gemmi KI (AT Re-
search Assistant) ermoglicht.

Literatur

[1] K80 Performance Benchmark (5.5-6 T /s mit CUDA 11.4 / CC 3.7). https:
//github.com/ggml-org/llama.cpp/issues/12140.

[2] K80 Gebrauchtpreis (20-50 USD). https://www.ebay.com/b/
NVIDIA-NVIDIA-Computer-Graphics-Cards-NVIDIA-Tesla-K80/27386/
bn_7116861813.

[3] Die __dpda-Instruktion ist fiir 4-bit-Quantisierungen notwendig und
fehlt bei CC | 6.1. https://www.reddit.com/r/LocallLLaMA/comments/
1dst8zp/llamacpp_owners_of_old_gpus_wanted_for/.

[4] DP4A-Instruktion ist erst ab CC 6.1 (Pascal) verfiigbar. https:
//www.reddit.com/r/LocalLLaMA/comments/1dst8zp/llamacpp_
owners_of_old_gpus_wanted_for/.

[5] PCle 3.0 als Engpass bei Inter-GPU Kommunikation
(kein NVLink). https://www.glukhov.org/post/2025/06/
llm-performance-and-pci-lanes/.

[6] Herausforderungen beim lokalen Deployment von LLMs und Kostendruck
(GDPR-Konformitit). https://arxiv.org/html/2407.12797v1.

[7] K80 Gesamtspezifikationen (4992 CUDA Kerne, 480 GB/s aggre-
gierte Bandbreite). https://www.nvidia.com/en-gb/data-center/
tesla-k80/.

[8] 24 GB VRAM ist geteilt auf zwei 12 GB GK210 GPUs. https://forums.
developer.nvidia.com/t/run-11m-in-k80/260624.

[9] Dual-GPU-Design der K80 mit 2x 12 GB VRAM. https://forums.
developer.nvidia.com/t/run-11m-in-k80/260624.

[10] K80 Compute Capability 3.7. https://developer.nvidia.com/
cuda-gpus.

https://github.com/ggml-org/llama.cpp/issues/12140
https://github.com/ggml-org/llama.cpp/issues/12140
https://www.ebay.com/b/NVIDIA-NVIDIA-Computer-Graphics-Cards-NVIDIA-Tesla-K80/27386/bn_7116861813
https://www.ebay.com/b/NVIDIA-NVIDIA-Computer-Graphics-Cards-NVIDIA-Tesla-K80/27386/bn_7116861813
https://www.ebay.com/b/NVIDIA-NVIDIA-Computer-Graphics-Cards-NVIDIA-Tesla-K80/27386/bn_7116861813
https://www.reddit.com/r/LocalLLaMA/comments/1dst8zp/llamacpp_owners_of_old_gpus_wanted_for/
https://www.reddit.com/r/LocalLLaMA/comments/1dst8zp/llamacpp_owners_of_old_gpus_wanted_for/
https://www.reddit.com/r/LocalLLaMA/comments/1dst8zp/llamacpp_owners_of_old_gpus_wanted_for/
https://www.reddit.com/r/LocalLLaMA/comments/1dst8zp/llamacpp_owners_of_old_gpus_wanted_for/
https://www.reddit.com/r/LocalLLaMA/comments/1dst8zp/llamacpp_owners_of_old_gpus_wanted_for/
https://www.glukhov.org/post/2025/06/llm-performance-and-pci-lanes/
https://www.glukhov.org/post/2025/06/llm-performance-and-pci-lanes/
https://arxiv.org/html/2407.12797v1
https://www.nvidia.com/en-gb/data-center/tesla-k80/
https://www.nvidia.com/en-gb/data-center/tesla-k80/
https://forums.developer.nvidia.com/t/run-llm-in-k80/260624
https://forums.developer.nvidia.com/t/run-llm-in-k80/260624
https://forums.developer.nvidia.com/t/run-llm-in-k80/260624
https://forums.developer.nvidia.com/t/run-llm-in-k80/260624
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus

[11]

Kepler-Architektur (CC 3.0 und 3.7) in CUDA 12.0 als de-
precated markiert. https://forums.developer.nvidia.com/t/
k80-is-it-possible-to-still-use-these-cards/291659.

Ollama CC 3.7 Unterstiitzung via Community Fork 01lama37. https://
hub.docker.com/r/dogkeeper886/0llama37.

PCle 3.0 als Engpass bei Inter-GPU Kommunikation
(kein NVLink). https://www.glukhov.org/post/2025/06/
llm-performance-and-pci-lanes/.

PCle Engpass nur beim Laden des Modells, nicht bei Single-GPU
Inferenz. https://www.reddit.com/r/LocallLLaMA/comments/1bhfjd3/
quick_experiment_how_is_inference_affected_with/.

K80 GK210-Kern Spezifikationen und Bandbreite 240.6 GB/s. https://
www . techpowerup. com/gpu-specs/tesla-k80.c2616.

RTX 4060 Ti 16GB als moderne Alternative (448 GB/s Bandbrei-
te). https://www.reddit.com/r/LocalLLaMA/comments/1n89ryn/most_
affordable_ai_computer_with_gpu_gputer_you/7tl=de.

Moderne T/s Raten (> 190 T/s). https://www.researchgate.net/
publication/395696223_Performance_benchmarking_of_free_LLMs_
A_practical_analysis_of_token_processing_efficiency.

LLM inference systems. https://arxiv.org/html/2506.21901.
K80 Passive Kiithlung. https://esologic.com/tesla-cooler/.

DIY-Umbau zur aktiven Kiihlung. https://wuw.
reddit.com/r/pcmods/comments/nhfwh7/guide_using_
an-nvidia-tesla-k80-datacenter-gpu/.

Proprietiarer K80 Power Connector. https://forums.developer.nvidia.
com/t/k80-power-connector/119765.

Proprietidre 8-Pin-Stromversorgung und Risiko des Bricking. https://
forums.developer.nvidia.com/t/k80-power-connector/119765.

Pascal-basierte Mining-Karten als Budget-Alternative (P102/P104).
https://www.reddit.com/r/ollama/comments/1h12azn/is_
nvidia-tesla-k80-24gb-good-for-running-1lama32/.

Horn, P. (2025). NVIDIA Tesla K80 GPU LLM Node. Blogbeitrag. https:
//philipp-horn.dev/2025/09/30/nvidia-tesla-k80-gpu-1llm-node/.

Docker Compose Konfiguration fiir Ollama auf Tesla K80 (Ubun-
tu 20.04 LTS). https://git.4noobs.de/h3rb3rn/ollama/-/blob/main/
ollama-tesla-k80/docker-compose.yml.

LLM GPU Benchmark - Selbstgehostete = App. https://
1lm-gpu-benchmark.self-hosted.app/.

https://forums.developer.nvidia.com/t/k80-is-it-possible-to-still-use-these-cards/291659
https://forums.developer.nvidia.com/t/k80-is-it-possible-to-still-use-these-cards/291659
https://hub.docker.com/r/dogkeeper886/ollama37
https://hub.docker.com/r/dogkeeper886/ollama37
https://www.glukhov.org/post/2025/06/llm-performance-and-pci-lanes/
https://www.glukhov.org/post/2025/06/llm-performance-and-pci-lanes/
https://www.reddit.com/r/LocalLLaMA/comments/1bhfjd3/quick_experiment_how_is_inference_affected_with/
https://www.reddit.com/r/LocalLLaMA/comments/1bhfjd3/quick_experiment_how_is_inference_affected_with/
https://www.techpowerup.com/gpu-specs/tesla-k80.c2616
https://www.techpowerup.com/gpu-specs/tesla-k80.c2616
https://www.reddit.com/r/LocalLLaMA/comments/1n89ryn/most_affordable_ai_computer_with_gpu_gputer_you/?tl=de
https://www.reddit.com/r/LocalLLaMA/comments/1n89ryn/most_affordable_ai_computer_with_gpu_gputer_you/?tl=de
https://www.researchgate.net/publication/395696223_Performance_benchmarking_of_free_LLMs_A_practical_analysis_of_token_processing_efficiency
https://www.researchgate.net/publication/395696223_Performance_benchmarking_of_free_LLMs_A_practical_analysis_of_token_processing_efficiency
https://www.researchgate.net/publication/395696223_Performance_benchmarking_of_free_LLMs_A_practical_analysis_of_token_processing_efficiency
https://arxiv.org/html/2506.21901
https://esologic.com/tesla-cooler/
https://www.reddit.com/r/pcmods/comments/nhfwh7/guide_using_an-nvidia-tesla-k80-datacenter-gpu/
https://www.reddit.com/r/pcmods/comments/nhfwh7/guide_using_an-nvidia-tesla-k80-datacenter-gpu/
https://www.reddit.com/r/pcmods/comments/nhfwh7/guide_using_an-nvidia-tesla-k80-datacenter-gpu/
https://forums.developer.nvidia.com/t/k80-power-connector/119765
https://forums.developer.nvidia.com/t/k80-power-connector/119765
https://forums.developer.nvidia.com/t/k80-power-connector/119765
https://forums.developer.nvidia.com/t/k80-power-connector/119765
https://www.reddit.com/r/ollama/comments/1h12azn/is_nvidia-tesla-k80-24gb-good-for-running-llama32/
https://www.reddit.com/r/ollama/comments/1h12azn/is_nvidia-tesla-k80-24gb-good-for-running-llama32/
https://philipp-horn.dev/2025/09/30/nvidia-tesla-k80-gpu-llm-node/
https://philipp-horn.dev/2025/09/30/nvidia-tesla-k80-gpu-llm-node/
https://git.4noobs.de/h3rb3rn/ollama/-/blob/main/ollama-tesla-k80/docker-compose.yml
https://git.4noobs.de/h3rb3rn/ollama/-/blob/main/ollama-tesla-k80/docker-compose.yml
https://llm-gpu-benchmark.self-hosted.app/
https://llm-gpu-benchmark.self-hosted.app/

	Einleitung und Kontext
	Architektonische Limit. der Kepler-Plattform
	Compute Capability (CC 3.7) und Software-Dekompatibilität
	Fehlen der DP4A-Instruktion
	VRAM-Segmentierung und PCIe-Bottleneck

	Methodik und Experimentelle Basis
	Benchmark-Umgebung und LLM
	Quantifizierung des Token-Durchsatzes

	Ergebnisse und Ökonomische Analyse
	Architektonische Performance-Engpässe
	Physische Komplexität und Proprietäre Risiken
	Ökonomischer Vergleich (TCO)

	Fazit und Empfehlung

